

High Data Rate Communications in CubeSat Swarms

C. Vourch & T. Drysdale

Electronics and Nanoscale Engineering Research Division

Insutal.

m

1000

What are CubeSats?

Characteristics

- Small standardized satellites:
 - Chassis based on units (1U) of 10x10x10cm
 - 1U ~1Kg
 - Intensive usage of Commercial Off-The-Shelf (COTS) components

Main advantages

- Standardisation and cost reduction
 - COTS components
- Cheaper and easier access to space

Drawbacks

- Limited payload
- Higher risk of mission failure
 - Are COTS viable in a space environment? (space qualified?)

Credit: Pumpkin, Inc.

History

• From the first CubeSat...

- First specifications of CubeSats: 1999 (Cal Poly & Stanford)
- First launch of a CubeSat: 2003
- ... to the first UK Space Agency's CubeSat
 - UKube-1: 8th July 2014:
 - 3U CubeSat designed and built in Scotland (ClydeSpace)

Credit: UTIAS

Credit: Nature, Vol. 508, 16 April 2014

And now?

Future of CubeSats

• First generation of CubeSats already demonstrated viability

- The "shelf" of the available components is already well furnished and still growing
- Current CubeSat EO missions provide useful data
- Physical limitations for specific missions

Next generation of CubeSats

- Move toward distributed platforms: swarms of CubeSats
 - Take the most out of the small size of CubeSats
 - Possibility of large aperture

Current projects involving swarms of CubeSats

- <u>SOLARA/SARA</u> (MIT)
 - Solar Observing Low-frequency Array for Radio Astronomy/Separated Antennas Reconfigurable Array (30kHz – 30MHz)
 - 16 to 20 6U-CubeSats in circular formation with a diameter between 10 and 100 km
- Mothercube (Aurora Flight Sciences)
 - CubeSat-based Synthetic Aperture Radio Telescope
 - Technology demonstrator for CubeSat cluster
 - 3U-CubeSats

Credit: MIT/JPL

Two main challenges for swarms of CubeSats

1/ Pointing and positioning systems

Available now: Altitude and Determination Control System

- Allows accurate pointing for CubeSats
- Better capabilities than a simple "tumbling" CubeSat
- Current limitation: Propulsion systems (Thrusters)
 - Propulsion system for relative positioning of CubeSats within the swarm
 - Current research on ion/plasma thrusters

Credit: Maryland Aerospace, Inc.

Credit: Dan Courtney, MIT

Two main challenges for swarms of CubeSats

- 2/ Communication systems
- **Our requirements:**
 - Small and versatile antenna
 - Directive antenna
 - Do not waste energy with omnidirectional radiation pattern
 - Larger communication range within the swarm
 - Avoid interferences between communication paths
 - Large bandwidth for high-data rate
 - Enable distributed tasks amongst CubeSats or synthetic aperture swarms
 - No need for processing units

Choice of the V-band

• Our choices

- V-band provides:
 - larger bandwidth than current used bands
 - is available for communication within satellites
 - components already existing for terrestrial applications

Band	Frequency	Available BW
UHF	435/915 MHz	30 MHz
S-band	2.45 GHz	100 MHz
K-band	23.05 GHz	1GHz
V-band	60 GHz	12 GHz

59GHz

71GHz

Choice of the V-band

• Our choices

- "Bull's eye" antenna
 - Very-low profile (few millimetres)
 - Directive antenna (gain>15dBi)
 - Easy to manufacture at 60 GHz (CNC milling machine)

Our "Bull's eye" design and performance

(a)

-80

-60 -40 -20

20

0

Angle (°)

40

60 80 100

C. J, Vourch and T. D. Drysdale, 'V-Band "Bull's eye" antenna for CubeSat applications,' IEEE Antennas and Wireless Propagation Letters, 13. pp. 1092-1095. 2014

Simulation

Future work: integration

Integrated RX/TX V-band module

- Provides a standardised solution with integrated RX/TX antennas
- Module size: 50x100x40mm (0.5U)
- Commercial VubiQ modules:
 - Output power: 10mW
 - Frequency: 57 to 64 GHz
 - 1.5 GHz of modulated bandwidth

Credit: VuBiQ, Inc

Conclusion

- For physical reasons, CubeSats will never have the same capabilities than conventional satellites. We need to work on the type of mission for which they are more appropriate: there is a an opportunity for swarms of CubeSats
- Efficient communication systems are necessary for distributed task-based swarms
 - Swarms development is driven by recognized strategic importance of the CubeSat platform
 - V-band "Bull's eye" antenna communication module addresses the problem of high-data rate communication within a swarm CubeSats
 - > 12GHz of available bandwidth
 - Very-low profile, highly-directive and cheap "Bull's eye" antenna
 - Commercially available V-band communication module for terrestrial applications